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INFINITE ELEMENTS FOR WATER WAVE RADIATION 
AND SCATTERING* 

H. S. CHEN 
NOAAIN WSjNMC,  Ocean Products Center, 5200 Auth Road, Washington, DC 20233, U.S.A. 

SUMMARY 
The infinite element method is employed to approximate the solutions of Webster's horn equation and 
Berkhoffs equation for water wave radiation and scattering in an unbounded domain. Functionals based on 
the first variational principle are presented. Two new infinite elements, which exactly satisfy the one- and 
two-dimensional Sommerfeld radiation condition, are presented; the simple shape functions are constructed 
on the basis of the asymptotic behaviour of the scattered wave at infinity. All the integrals in the functionals 
involving each infinite element are integrated analytically and, as a result, no numerical integration is 
required. The programming requirements and computational efficiency are essentially no different than 
those of the conventional finite element method. For the test cases presented, the numerical results are 
acceptably accurate when compared with the existing solutions and laboratory data. 
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INTRODUCTION 

The boundary value problem associated with water wave radiation and scattering of coastal or 
offshore water is usually formulated in an unbounded domain, because the Sommerfeld radiation 
condition must be imposed at infinity or at  least at large distances from the origins of the 
generating or scattering mechanism. This unbounded domain generally poses a difficulty in the 
conventional finite element or finite difference analysis of the problem: it requires an unacceptably 
large computational domain; moreover, the accuracy of the numerical solution is not warranted 
because the solution is often affected by the location of the open boundaries where the domain is 
artificially truncated for computational convenience. 

In finite element analysis, despite the success of using the hybrid element method (HEM)' - 6  

and the infinite element method (IEM)7-'2 in dealing with this unbounded domain problem, 
both methods are complex in the programming and computation, which in turn may limit the 
methods only to certain applications. HEM requires that an analytic solution, which allows 
unknown coefficients, be obtained in the far region and a functional based on the first variational 
principle be constructed in the near region. In addition, the method tends to destroy the sparsity 
of the matrices used in the conventional finite element method and increases the programming 
and computational burden. On the other hand, while IEM preserves the same programming 
effort and computational efficiency as that of the conventional finite element method, the use of 
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correct shape and mapping functions and simple numerical integration remains to be explored 
further. 

In this paper a one- and a two-dimensional boundary value problem for water wave radiation 
and scattering in an unbounded water domain are formulated. The governing equations are 
Webster's horn equation for the one-dimensional problem and Berkhoff s equation for the two- 
dimensional problem. IEM is employed for solutions. The functionals, based on the first 
variational principle, are presented. In IEM we use conventional finite elements in the near region 
and a new type of infinite elements in the far region to approximate the solution. Two kinds of 
infinite elements, which exactly satisfy the one-dimensional and two-dimensional Sommerfeld 
radiation condition respectively, are presented. The attractive features of these infinite elements 
are: the shape and mapping functions are simple; all the integrals involving the infinite elements 
can be integrated analytically; and no numerical integration is required. These features result in 
simple programming and efficient computation. Applications are initially shown for the one- 
dimensional boundary value problem, followed by the two-dimensional boundary value problem. 

FORMULATION AND CALCULATION 

In linear wave theory, if a wave varies with time as e-iwf, the wave motion can be characterized by 
the function +(x)e-'"', where 4 is the velocity potential, which is a complex function of x, x 
represents the spatial co-ordinates and t denotes time. Also, i = ,/( - l), w is the wave radian 
frequency, k is the wave number, h(x) is the water depth and g is the gravitational acceleration. 
Then the dispersion relation is o2 =gk tanh kh, the phase velocity is c = o /k  and the group 
velocity is C, = ao/dk. 

One-dimensional boundary value problem 

The velocity potential in a channel of variable width b is given as a solution of 

d d 4  - Abcc, - + bcc, k2 4 = 0. 
dx dx 

Here A is the friction f a ~ t o r , ~  

I= ( 1+ h j k k h e i y ) - l ,  

where /3 is the friction coefficient, y is the phase difference and a, is the incident wave amplitude. 
Equation (1) can be readily obtained by laterally integrating Berkhoff s equation (17) given later 
in the two-dimensional problem. In general, I is a complex function; its imaginary part causes 
wave damping and is a small positive value in most cases. If there is no friction, i.e. I =  1, then (1) 
reduces to Webster's horn equation. Without loss of generality we consider a channel consisting 
of a straight channel of constant width b ,  and a channel of fan shape as shown in Figure l(a). The 
governing equation is Webster's horn equation with h = constant (hence c and c, are constants): 

d d 4  
- b-+bk24=0. 
dx dx (3) 

The boundary condition at the left-hand end of the channel is specified as a wave generator 
such that 
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Figure 1. (a) Definition sketch and (b) network of finite and infinite elements of a one-dimensional channel 

The Sommerfeld radiation condition is imposed at the right-hand end (at infinity) of the 
channel: 

X'CO ~ i m  ~ x (  & - i t ) ~ = o .  

This condition requires 4 - x- 1/2 eikx at x+co. 
The analytical solution of the boundary value problem can be obtained to be 

c o s k ( x - x o ) H o ( k r , ) + s i n k ( x - x o ) H b ( k r o )  
cos kxoWo(kro)+ sin kxoH, (kro )  

if O,<x,<x,, 
-- 4 -  (A\ 

\"I 

where H , ( .  )and Hb( .) are Hankel functions of the first kind and their derivatives respectively, xo 
is the length of the straight channel, 8 is the angle of the fan channel, ro=bo/d and 

(7) 
bo 
8 

r = - + x - xo. 
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Later, equation (6) is used for comparison with the infinite element solution. 

Znjnite element solution. The variational principle for the boundary value problem requires 
that the following functional, II,, be stationary with respect to an arbitrary first variation of 4. 
The functional is given as 

111(4)=-1[1 b ( g ) ' d x + i [ "  0 bk24'dx-[ % b 4 ]  x = o  +)[ikb42],=,. (9) 

The integrals in (9) involve integration over an infinite line domain, which makes the 
conventional finite element discretization and solution invalid. In this example IEM is employed 
to obtain the solution; we use the two-node linear elements in the near region, i.e. in the region 
from the wave generator to some distance beyond the end of the straight channel, and one one- 
node infinite element in the far region (Figure l(b)). Since the two-node linear element has been 
extensively described by Zienkiewicz' and others, only the one-node infinite element is sub- 
sequently described. 

Znjnite element. Inspired by the asymptotic requirement of the solution at x+co, equation ( 5 )  
(also the asymptotic form of the Hankel function at kr+m for (6)), we construct the one-node 
infinite element specified by the following shape function: 

N r l = / (  ?)erp[ik(r-r,)], O<r,<r<oo, 

where r is the local co-ordinate with the origin 0' at the origin of the fan channel as shown in 
Figure l(a); the relation between x and r is given by (7). In this case rI divides the near and the far 
region; the location of r l  is chosen for computational convenience but can be at any location 
beyond the generating and scattering sources. The velocity potential of the infinite element is then 
approximated by 

4 = N r 1 4 1 ,  (11) 
where 4,  is the nodal velocity potential to be solved. Also, N r ,  = 1 (hence 4 = 4 , )  at node r =I,,  
which is a required nodal condition for the shape function; 4 also exactly satisfies (5). 

Discretization and calculation. Next, the entire domain is discretized into the two-node linear 
elements in the near region and one one-node infinite element in the far region as shown in 
Figure l(b). The calculation of the element stiffness matrices for the two-node linear elements in 
the near region is no different than the conventional finite element method, which is not furnished 
here. The calculation of the element stiffness matrices for the one-node infinite element in the far 
region is carried out for the first two integrals of (9) from x = x l  to co: 
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where Y =  -2ikr’. In obtaining (12) and (13) we have invoked (7), (8), (10) and (11) and used the 
following exponential integral functions and their recurrence relations: l4 

(n=O, 1 , 2 , 3 , .  . . ; RezaO), 

e-’ 
Eo(z)= --, Z (15) 

1 
n E,+,(z)=-[e-’-zE,(z)] ( n = 1 , 2 , 3 , .  . .). (16) 

Clearly, all the integrals involving the infinite element are integrated analytically in terms of the 
exponential integral functions involving no numerical integration. The subroutine CEXPLI from 
the NSWC library’ is used to calculate the exponential integral functions. Procedures to 
assemble the element matrices are straightforward, similar to those of the conventional finite 
element method. The numerical solution is then obtained by taking II, stationary with respect to 
each nodal 4, followed by solving a set of the simultaneous linear equations. Note that the last 
term in (9) is immaterial because it vanishes as x+oo owing to the existence of friction (if there is 
no friction, take x - +  cc, before letting A+ 1) and thus is never calculated. 

The numerical results of the absolute and real values of 4 for kxo=1.25n are shown 
in Figures(2a) and 2(b). The absolute difference between the numerical results and the exact 
solution (6)  is less than 0,001. 

Two-dimensional boundary value problem 

The two-dimensional boundary value problem of water wave scattering by the presence of solid 
boundaries of arbitrary geometry and variable depth, as shown in Figure 3, has been formulated 
by Chen’ and others. The governing equation is 

a a4 a a4 
ax , a x  ay ay 
-ACC - + - A C c , - + + C , k 2 ~ = 0 .  

Along the solid wall the following absorbent boundary condition is adopted: 

where n is the unit normal vector outward from the water domain and K, is the reflection 
coefficient of the wall. 

Now let 4s be the velocity potential of the scattered wave, which must satisfy (17) and be an 
outgoing wave at infinity. It is the total wave 4 less the incident wave &,, i.e. 

4 s  = 4 - 40. (19) 
In the far region the Sommerfeld radiation condition is imposed at infinity to ensure a unique 

solution. We consider both the one- and two-dimensional Sommerfeld radiation condition’ in 
this problem; the one-dimensional Sommerfeld radiation condition applies to a channel (canal or 
river) and the two-dimensional one to an open coast/offshore water. The one-dimensional 
Sommerfeld radiation condition is 
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Figure 2. Comparison of (a) the absolute value of the velocity potential, 141, and (b) the real part of the velocity potential, 
Re{r$} for kx,= 1 . 2 5 ~ :  -, analytical solution; 0 0 0, IEM solution 
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Figure 3. Definition sketch of the two-dimensional boundary value problem 

where (x’, y’) are the local Cartesian co-ordinates as shown in Figure 4(a). This condition requires 
4s -exp[i( k/,/A)x’] at x’+ 03. The two-dimensional Sommerfeld radiation condition is 

where (r, 6) are the local polar co-ordinates as shown in Figure qb). This condition requires 
4,-(1/Jr)exp[i(k/,/l)r] at r+m. Note that the expressions in parentheses for (20) and (21) are 
of the same form as (5 )  and are those usually used in most water wave problems, except for the 
friction factor 1. 

Znfnite element solution. Extension of IEM, used in the one-dimensional boundary value 
problem, to the two-dimensional boundary value problem presents no conceptual difficulties. The 
water domain is divided into three regions as illustrated in Figure 3: A is the near reion; R, is the 
far region of the one-dimensional Sommerfeld radiation condition; and R, is the far region of the 
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Figure 4. (a) Infinite element for the one-dimensional Sommerfeld radiation condition in R, and (b) infinite element for 
the two-dimensional Sommerfeld radiation condition in R, 

two-dimensional Sommerfeld radiation condition. In Figure 3 the lines aA separate A and 
R, uR,  and their locations are chosen anywhere beyond the scattering origins; the lines dB are 
wall boundaries in the near region; the lines aBRj (j  = 1,2) are wall boundaries in the far regions 
Rj; and the lines aRj are at infinity. The functional ll, for the boundary value problem using IEM 
for a solution is constructed as follows: 

where dA and dL are the area and line differential operators respectively and nA is the unit normal 
vector outwards from region A. Again, the integrals involving regions R, and R, are over an 
infinite domain, making direct application of the conventional finite element method invalid. In 
IEM we use three-node triangular linear elements in the near region and a new type of two-node 
infinite elements in the far region as approximations. The three-node linear element has also been 
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extensively de~cribed;'~ thus only the two two-node infinite elements for R, and R, are described 
in the following section. 

Infinite elements. In R, the infinite element of semi-infinite rectangular shape as shown in 
Figure 4(a) is used; the element domain is 0 < x' < 00 and y ;  6 y' 6 y ; .  On the basis the asymptotic 
behaviour of 4 at x'+m we construct the two-node infinite element specified by the following 
shape functions: 

where 

and (x', y') are the local Cartesian co-ordinates as shown in Figureqa). The shape functions 
satisfy the nodal condition: N x S y j 1  = 1 and N x . y . 2 = 0  at (0, y;); Nxty t !  = O  and N,.y+2= 1 at 
(0, yi).  The (scattered wave) velocity potential of the infinite element is written in terms of the two 
nodal velocity potentials 4sl and 4s2 as follows: 

4 s = N x ' y ' l  + Nx'y'24s2r O < X ' <  a, y ;  < y ' < y > .  (25) 
Clearly 4, of (25) exactly satisfies (20). 

In R, the infinite element of the shape of a sector outside a circle as shown in Figure 4(b) is 
used; the element domain is 0 < r1 6 r 6 co and 8, < 0 < 8,. The corresponding shape functions are 

where 

N r l  =/( ;)exp( i$-rl)), O<r l< r600 ,  

and (r, 6)  are the local polar co-ordinates; r I  is the radius of dA as shown in Figure qb). The shape 
functions satisfy (21) as well as the nodal condition. The (scattered wave) velocity potential of the 
infinite element is written as follows: 

d s = N r e l  4 s l  + N r 8 2 4 s 2 ,  0 < rI < r  < 00, G O <  02. (28) 
In the evaluation of 112, analogous to the one-dimensional boundary value problem, the 

calculation of the integrals over each element in the near region poses no difficulty; it is carried 
out using the same procedures of the conventional finite element method, procedures which we do 
not expound upon in this paper. In the far regions R, and R,, by choosing (25) or (28) for each 
type of the infinite elements and invoking (14) through (16), the third, fourth and fifth integrals in 
(22) are integrated respectively as follows. In region R, the third integral becomes 
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where {4s} is the array of the nodal (scattered wave) velocity potential of the infinite element and 
the superscript T is the transpose of the array, such that 

Also, 

A 1 
12 A 

A 1 
24 A 

p = -  ( 1  + X [ l + e X ~ , ( X ) ] } + -  [l-xeXE,(X)],  

q = -  (l+X[l+eXE,(X)]}-- [ l -xeXE,(X)]  

and 
k 
Jn I1. A =  8, - 81, X =  -2i 

The fourth and fifth integrals are 

-1:: ( I c c ,  % c$~) rI d8= {dS} (-Rcc, 5)  r l A  - { 1 }, 
r=r1  r = r ,  2 1 

In region R, the integrations for the third, fourth and fifth integrals are 

where we define 

X’ 1 q’=--- 
24 X’ 

X’ 1 
12 x p’ = - + 7, 

(32) 

(33) 

(34) 

and 

A’ = y;  - y ; ,  X I =  -2i-$A. (42) 

Therefore all integrals for each infinite element now are integrated analytically with results 
given in terms of the exponential integral function El(  .); again, no numerical integration is 



WATER WAVE RADIATION AND SCATTERING 565 

Figure 5. Network of finite and infinite elements for a circular cylinder 

required. The last integral of ll, is immaterial for the same reason given in the one-dimensional 
boundary value problem. In performing the variational procedures to obtain the solution, we 
have used (19) and S4,=Sq5 on aA (6 is the variational operator), i.e. 6bO=O since the incident 
wave is a given function. Now, for a given incident wave 4, and &$,/an on aA, an efficient 
solution is then obtained through the same procedure as that of the conventional finite element 
method. 

Examples. Numerical results are shown for two cases: one for a vertical circular cylinder and 
the other for a rectangular harbour. For the former case the network of finite and infinite elements 
is shown in Figure 5. In the calculation a plane incident wave train is given as 

(43) 
igao do= -- exp[ikrcos(8-8,)], 

where B0 is the incident wave angle. We also assume that there is no friction (A = 1) and a perfectly 
reflecting wall ( K ,  = 1). The absolute difference between the numerical results and the analytical 
solution is less than 0.03 as indicated in Figure 6. For the latter case the network of finite and 

w 
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Figure 6. Comparison of analytical and IEM results for a circular cylinder 

infinite elements is shown in Figure 7. We assume that an exciting wave train is the sum of an 
incident and a reflected wave on a partially reflecting wall: 

(44) 
iga, 4, = -- {exp[ikr cos( O - O,)] + K ,  exp [ikr cos( O - O,)] }, 
0 

where the wave field is specified with and without the effect of the bottom friction. For the case 
without friction and with perfect reflection, agreement between the numerical results and the 
analytical solutions and other numerical results'. is to two decimal places as indicated in 
Figure 8. For the case with friction and an absorbent wall (there is no analytical solution available 
for this case) the numerical results agree fairly well with laboratory data and other numerical 
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Figure 7. Network of finite and infinite elements for a rectangular harbour; b=6.04cm, 1=31.11 cm, water depth 
h = 25.72 cm 
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Figure 8. Comparison of the amplification factor 141/2ao at the centre of the back wall of the harbour 

except near the resonance peaks where the difference in peak value and phase is 
discernible, as also indicated in Figure 8. 

CONCLUSIONS 

The mathematical formulations of the one- and two-dimensional boundary value problems for 
water wave radiation and scattering in an unbounded domain are presented, along with their 
functionals. The functionals are constructed assuming that IEM is used to obtain a solution. The 
two new infinite elements are constructed on the basis of the asymptotic behaviour of the 
scattered waves at infinity. The shape functions are simple and satisfy the nodal condition as well 
as the Sommerfeld radiation condition. The integrals of the functionals for the infinite elements 
are integrated analytically without the need to employ numerical integration. The programming 
and computational efforts are similar to those of the conventional finite element method. For the 
test cases presented the numerical results are acceptably accurate when compared with the data 
and exact solutions. 
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